泡面作文>教学教案>高中教案>高中教案

高中物理优秀教案【精选10篇】

发布时间:

物理学是研究物质运动最一般规律和物质基本结构的学科。作为自然科学的带头学科,物理学研究大至宇宙,小至基本粒子等一切物质最基本的运动形式和规律,因此成为其他各自然科学学科的研究基础。泡面作文为您精心收集了高中物理优秀教案【精选10篇】,如果对您有一些参考与帮助,请分享给最好的同学。

高中物理优秀教案 篇一

教学目标:

1.理解电势差的概念及期 定义式 ,会根据电荷q在电场中移动时电场力所做的功WAB计算UAB,会根据电势差UAB计算电荷Q在电场中移动时电场力所做的功WAB=qUAB

2.理解电势的概念,知道电势与电势差的关系UAB= A - B ,知道电势的值与零电势的选择有关。

3.知道在电场中沿着电场线的方向电势越来越低。

4.知道什么是电势能,知道电场力做功与电势能改变的关系。

能力目标:培养学生的分析能力、综合能力。

德育目标:使学生能从类似的事物中找出共性。

教学重点:

电势、电势差的概念

教学难点:

电势、电势差的概念的引入

教学方法:

类比法、归纳法、问题解决法

教学过程:

一、复习引入

一个带正电的小球处于匀强电场中,会受到电场对它的力的作用,受力的方向如何呢?受力的大小呢?

(F=Eq)。电荷在电场中受力的作用,我们引入了描述电场力的性质的物理量,场强E。它是与有无电荷q无关的物理量,是由电场本身决定的物理量。

如果将带电小球从A点移动到B时,电场力对电荷做功吗?从本节课开始,我们从功和能的角度来研究电场。学习与电场能量有关的几个物理量(展示课题)

二、新课教学

电场力做功的问题我们不熟悉,但重力做功的问题。下面我们将从重力做功的问题出发来类比研究电场力做功。

(一)电场力做功与路径无关

(出示重力做功与路径无关的图)

物体在重力作用下,从A沿不同的路径运动到B位置,重力做功匀为mgh,与路径无关。

与此类似,电荷在匀强电场中受力的作用,把电荷从A移到电场中的B位置时,也可以沿不同的路径运动。类似重力做功,电场力做功也与运动路径无关。这个结论是从匀强电场得到的,对于非匀强电场也适用。所以我们在后面的课程中,研究电荷在电场中移动时,电场力做功的问题,可以认为电荷沿直线运动到另一位置。这是电场力做功的一个特点。

(二)电势差

1.引入(出示重力做功与重力成正比的图)

如果我们让不同的物体先后通过空间的A、B两个固定的位置。

如:重力为G物体,做功为W1=GhAB

重力为G2=2G……W2=…2GhAB……

则:WG G成正比,其比值

也就是说重力场中确定的两点间的高度差是一定的。与重物G的大小无关与有无重物下落是无关的。

但让一重物在A、B间落下时,则出W和G,可以用比值量度出hAB。

类似地(出示电场力做功Q与成正比的图)

我们在电场中A、B两点间移动不同电量的带电体时:

如果q1=+ q,设电场力做功为W1=W

则q2==+2q,则A到B时,位移相等,在移动过程的任一位置处,q2==+2q,则q2所受电场为q1的2倍,即移动过程中电场力做的功W2=2W……

则:W电 q成正比, 为一定值。

这个比值是由电场的A、B两点的位置决定的量。

与在这两个位置间移动电荷的电量大小无关,与是正电荷、负电荷无关,与在无电荷q无关。只是让这个电荷在这两点间移动后,用功和电量的比值把它的大小量度出来。在物理学中,把这个比值叫做电场中A、B两点间电势差。

2.电势差的概念:

板书:一、电势差

1.定义:电荷q在电场中由一点A移动到另一点B时,电场力所做的功WAB与电荷量q的比值WAB/q,叫做A、B两点间的电势差。用UAB表示。

2.定义式:UAB=

同AB电荷在电场中不同位置间移动时,电场力做的功多,两点间的电势差大。但两点间电电势差由电场本身决定,与Wq无关的。板书五:(1)点

(1)物理意义:电势差是电场本身的性质,与Wq无关。

(2)单位:1V=1J/C

电量为1C的正荷,在电场中两点间移动时,电场力做的功如果为1J,则两点的电势差为1伏特。

3.小练习:下面请看例1:

动画演示过程,标出力和V的方向,指出A到B的过程,电场力做正功,则

UAB= =……=2V。

如果从B到A移动时,电场力做负功,其WBA=-WAB

则UBA= =-2V

由例题得到以下启示:

(1):UAB=-UBA,(2)由于q有正负,WAB有正、负功,则其比值有可能为正、负值。一般我们只关心其大小,且电势差的大小记为U电压。初中物理中某导体两端的电压,指两点间的电势差。

得到板书:

(3)UAB=-UBA (4)|UAB|=|UBA|=U

根据电势差的定义式,得变形公式WAB=qUAB

板书:3:WAB=qUAB

(三)电势

我们用重力场中的高度差类比得到了电场中两点的电势差。重力场中还有高度一词,表示什么意思呢?劈如说选择(室内)地面作为参考平面,吊灯与地面之间的高度差为hA0=3m,我们也说成吊灯的高度为3m。类似地,如果把电场中的某一点作为参考点,另一点A与参考点之间的电势差就叫作A点的电势。

电势的概念

板书:二、电势

定义:如果在电场中选择某一点为参考点(零电势点),则A点与参考点O之间的电势差叫做A点的电势,记为 A,为特殊的电势差。

A=UAO=

所以其单位也是伏特。

下面做一个练习,求电场中各点的电势

已知:q=+1C

WAC=15J

WBC=5J UBC

WDC=-3J UAC UCD

(边展示力分析为何正功、负功)

则以C点为零电势点,则:

类似地:UBC=5V,UDC=-3V(做成填空)

则 A=15V B=5V D=-3V

①从计算中得到:电势有正、负值,是表示该点电势比零电势点的电势低,不代表方向,是标量。

②此时:AB之间的'电势差呢?

推导:

经观察,与A、B点的电势有何关系?

(UAB= A- B)

原来,AB点的电势差就是A、B点的电势之差,其值为负,表示A点电势比B点电势低是标量。不代表方向。

③如果以B点为零电势点,则A、C点的电势呢?

则 A=UAB=10V B=0V

看来,取不同的零电势点,各点的电势不同。

④此时AC点的电势差呢?

UAC= A- c=10V-(-5V)=15V

与原来以C点为零电势点的电势差相等。所以电势差是绝对的,与零电势点的选择无关,电势是相对的

出示板书内容:

UAB= A- B

说明:电势是相对的,电势差是绝对的

⑤再看例题中各点的电势,沿着电场线的方向,电势逐渐降低。

3.练习:例2:

①注意分析UAB=-10V为什么?

正电荷由A B点,F与位移的方向做什么功?

则WAB= qUAB=4×10-8J

则电势能增加了4×10-8J,其它形式的能转化为电势能。

②如果电荷为负电荷,在同一电场由一点A移动到同一点B呢?

由于电场没关,两点的位置没有变,则AB间的电热差不变。

所以WAB= qUAB=2×10-8J

电势能减少了,转化成了其它形式的能。

③此题还可由W=Uθ来计算,W的正负根据分析得出,正功为正,负功为负。

四、小结:

1.类比重力场的高度差引入电势差:

UAB= 与q无关

2.类比重力场的高度引入电势

高中物理教案 篇二

一、教学目标

1.理解功的概念:

(1)知道做机械功的两个不可缺少的因素,知道做功和工作的区别;

(2)知道当力与位移方向的夹角大于90时,力对物体做负功,或说物体克服这个力做了功。

2.掌握功的计算:

(1)知道计算机械功的公式W=Fscos知道在国际单位制中,功的单位是焦耳(J);知道功是标量。

(2)能够用公式W=Fscos进行有关计算。

二、重点、难点分析

1.重点是使学生在理解力对物体做功的两个要素的基础上掌握机械功的计算公式。

2.物体在力的方向上的位移与物体运动的位移容易混淆,这是难点。

3.要使学生对负功的意义有所认识,也较困难,也是难点。

三、教具

带有牵引细线的滑块(或小车)。

四、主要教学过程

(一)引入新课

功这个词我们并不陌生,初中物理中学习过功的一些初步知识,今天我们又来学习功的有关知识,绝不是简单地重复,而是要使我们对功的认识再提高一步。

(二)教学过程设计

1.功的概念

先请同学回顾一下初中学过的与功的概念密切相关的如下两个问题:什么叫做功?谁对谁做功?然后做如下总结并板书:

(1)如果一个物体受到力的作用,并且在力的方向上发生了位移,物理学中就说这个力对物体做了功。

然后演示用水平拉力使滑块沿拉力方向在讲桌上滑动一段距离,并将示意图画到黑板上,如图1所示,与同学一起讨论如下问题:在上述过程中,拉力F对滑块是否做了功?滑块所受的重力mg对滑块是否做了功?桌面对滑块的支持力N是否对滑块做了功?强调指出,分析一个力是否对物体做功,关键是要看受力物体在这个力的方向上是否有位移。至此可作出如下总结并板书:

(2)在物理学中,力和物体在力的方向上发生的位移,是做功的两个不可缺少的因素。

2.功的公式

就图1提出:力F使滑块发生位移s这个过程中,F对滑块做了多少功如何计算?由同学回答出如下计算公式:W=Fs。就此再进一步提问:如果细绳斜向上拉滑块,如图2所示,这种情况下滑块沿F方向的位移是多少?与同学一起分析并得出这一位移为s cos 。至此按功的前一公式即可得到如下计算公式:

W=Fscos

再根据公式W=Fs做启发式提问:按此公式考虑,只要F与s在同一直线上,乘起来就可以求得力对物体所做的功。在图2中,我们是将位移分解到F的方向上,如果我们将力F分解到物体位移s的方向上,看看能得到什么结果?至此在图2中将F分解到s的方向上得到这个分力为Fcos,再与s相乘,结果仍然是W=Fscos。就此指出,计算一个力对物体所做的功的大小,与力F的大小、物体位移s的大小及F和s二者方向之间的夹角有关,且此计算公式有普遍意义(对计算机械功而言)。至此作出如下板书:

W=Fscos

力对物体所做的功,等于力的大小、位移的大小、力和位移的夹角的余弦三者的乘积。

接下来给出F=100N、s=5m、=37,与同学一起计算功W,得出W=400Nm。就此说明1Nm这个功的大小被规定为功的单位,为方便起见,取名为焦耳,符号为J,即1J=1Nm。最后明确板书为:

在国际单位制中,功的单位是焦耳(J)

1J=1Nm

3.正功、负功

(1)首先对功的计算公式W=Fscos的可能值与学生共同讨论。从cos 的可能值入手讨论,指出功W可能为正值、负值或零,再进一步说明,力F与s间夹角的取值范围,最后总结并作如下板书:

当090时,cos为正值, W为正值,称为力对物体做正功,或称为力对物体做功。

当=90时,cos=0,W=0,力对物体做零功,即力对物体不做功。

当90180时,cos为负值, W为负值,称为力对物体做负功,或说物体克服这个力做功。

(2)与学生一起先讨论功的物理意义,然后再说明正功、负功的物理意义。

①提出功是描述什么的物理量这个问题与学生讨论。结合图1,使学生注意到力作用滑块并持续使滑块在力的方向上运动,发生了一段位移,引导学生认识其特征是力在空间位移上逐渐累积的作用过程。

然后就此提出:这个累积作用过程到底累积什么?举如下两个事例启发学生思考:

a.一辆手推车上装有很多货物,搬运工推车要用很大的力。向前推一段距离就要休息一会儿,然后有了力气再推车走。

b.如果要你将重物从一楼向六楼上搬,搬运过程中会有什么感觉?

首先使学生意识到上述两个过程都是人用力对物体做功的过程,都要消耗体能。就此指出做功过程是能量转化过程,做功越多,能量转化得越多,因而功是能量转化的量度。能量是标量,相应功也是标量。板书如下:

功是描述力在空间位移上累积作用的物理量。功是能量转化的量度,功是标量。

②在上述对功的意义认识的基础上,讨论正功和负功的意义,得出如下认识并板书:

正功的意义是:力对物体做功向物体提供能量,即受力物体获得了能量。

负功的意义是:物体克服外力做功,向外输出能量(以消耗自身的能量为代价),即负功表示物体失去了能量。

4.例题讲解或讨论

例1.课本p.110上的〔例题〕是功的计算公式的应用示范。分析过程中应使学生明确:推力F对箱子所做的功,实际上就是推力F的水平分力Fcos对箱子所做的功,而推力 F的竖直分力Fsin与位移s的方向是垂直的,对箱子不做功。

例2.如图3所示,ABCD为画在水平地面上的`正方形,其边长为a,P为静止于A点的物体。用水平力F沿直线 AB拉物体缓慢滑动到B点停下,然后仍用水平力F沿直线BC拉物体滑动到C点停下,接下来仍用水平力F沿直线CD拉物体滑动到D点停下,最后仍用水平力F沿直线DA拉物体滑动到A点停下。若后三段运动中物体也是缓慢的,求全过程中水平力F对物体所做的功是多少?

此例题先让学生做,然后找出一个所得结果是W=0的学生发言,此时会有学生反对,并能说出W=4Fa才是正确结果。让后者讲其思路和做法,然后总结,使学生明确在每一段位移a中,力F都与a同方向,做功为Fa,四个过程加起来就是4Fa。强调:功的概念中的位移是在这个力的方向上的位移,而不能简单地与物体运动的位移画等号。要结合物理过程做具体分析。

例3.如图4所示,F1和F2是作用在物体P上的两个水平恒力,大小分别为:F1=3N,F2=4N,在这两个力共同作用下,使物体P由静止开始沿水平面移动5m距离的过程中,它们对物体各做多少功?它们对物体做功的代数和是多少?F1、F2的合力对P做多少功?

此例题要解决两个方面的问题,一是强化功的计算公式的正确应用,纠正学生中出现的错误,即不注意力与位移方向的分析,直接用3N乘5m、4N乘5m这种低级错误,引导学生注意在题目没有给出位移方向时,应该根据动力学和运动学知识作出符合实际的判断;二是通过例题得到的结果,使学生知道一个物体所受合力对物体所做的功。等于各个力对物体所做的功的代数和,并从合力功与分力功所遵从的运算法则,深化功是标量的认识。

解答过程如下:位移在F1、F2方向上的分量分别为s1=3m、s2=4m,F1对P做功为9J,F2对P做功为16J,二者的代数和为25J。F1、F2的合力为5N,物体的位移与合力方向相同,合力对物体做功为W=Fs=5N5m=25J。

例4.如图5所示。A为静止在水平桌面上的物体,其右侧固定着一个定滑轮O,跨过定滑轮的细绳的P端固定在墙壁上,于细绳的另一端Q用水平力F向右拉,物体向右滑动s的过程中,力F对物体做多少功?(上、下两段绳均保持水平)

本例题仍重点解决计算功时对力和位移这两个要素的分析。如果着眼于受力物体,它受到水平向右的力为两条绳的拉力,合力为2F。因而合力对物体所做的功为W=2Fs;如果着眼于绳子的Q端,即力F的作用点,则可知物体向右发主s位移过程中,Q点的位移为2s,因而力F拉绳所做的功W=F2s=2Fs。两种不同处理方法结果是相同的。

五、课堂小结

1.对功的概念和功的物理意义的主要内容作必要的重复(包括正功和负功的意义)。

2.对功的计算公式及其应用的主要问题再作些强调。

六、说明

1.考虑到功的定义式W=Fscos与课本上讲的功的公式相同,特别是对式中s的解释不一,有物体位移与力的作用点的位移之分,因而没有给出明确的功的定义的文字表达。实际问题中会用功的公式正确进行计算就可以了。从例题4可以看出,定义一个力对物体所做的功,将位移解释为力的作用点在力的方向上的位移是比较恰当的。如果将位移解释为受力物体在力的方向上的位移,学生会得出W=Fs这一错误结果,还会理直气壮地坚持错误,纠正起来就困难多了。

2.由于对功的物理意义的讲解是初步的,因而对正功、负功的物理意义的讲解也是初步的。这节课中只是讲到受力物体得到能量还是失去能量这个程度。在学习了机械能守恒定律之后,再进一步作出说明。在机械能守恒的物理过程中,有重力做功,地球上的一个物体的机械能并没有增加,因而正、负功的意义就不能用能量得失关系去说明了。在这种情况下,重力做正功,表示势能向动能转化;重力做负功,表示动能向势能转化,这里的正功、负功不再表示能量得失,而是表示能量转化方向的。

高中物理的优秀教案 篇三

教学目标

(一)知识与技能

1.知道产生感应电流的条件。

2.会使用线圈以及常见磁铁完成简单的实验。

(二)过程与方法

学会通过实验观察、记录结果、分析论证得出结论的科学探究方法

(三)情感、态度与价值观

渗透物理学方法的教育,通过实验观察和实验探究,理解感应电流的产生条件。举例说明电磁感应在生活和生产中的应用。

教学重点、难点

教学重点:通过实验观察和实验探究,理解感应电流的产生条件。

教学难点:感应电流的产生条件。

教学方法

实验观察法、分析法、实验归纳法、讲授法

教学手段

条形磁铁(两个),导体棒,示教电流表,线圈(粗、细各一个),学生电源,开关,滑动变阻器,导线若干,

教学过程

一、基本知识

(一)知识准备

①磁通量

定义:公式:?=BS 单位:符号:

推导:B=?/S,磁感应强度又叫磁通密度,用Wb/ m2表示B的单位;

计算:当B与S垂直时,或当B与S不垂直时,?的计算

②初中知识回顾:当闭合电路的一部分做切割磁感线运动时,电路中会产生感应电流。

电磁感应现象:由磁产生电的现象

(二)新课讲解

1、实验一:闭合电路的部分导线在匀强磁场中切割磁感线,教材P6图4.2-1

探究导线运动快慢与电流表示数大小的关系。

实验二:向线圈中插入磁铁,或把磁铁从线圈中抽出,教材P6图4.2-2

探究磁铁插入或抽出快慢与电流表示数大小的关系

2、模仿法拉第的实验:通电线圈放入大线圈或从大线圈中拔出,

或改变线圈中电流的大小(改变滑线变阻器的滑片位置),

教材P7图4.2-3

探究将小线圈从大线圈中抽出或放入快慢与电流表示数的

关系

3、分析论证:

实验一:磁场强度不发生变化,但闭合线圈的面积发生变化;

实验二:①磁铁插入线圈时,线圈的面积不变,但磁场由弱变强;

②磁铁从线圈中抽出时,线圈的面积也不改变,磁场由强变弱;

实验三:①通电线圈插入大线圈时,大线圈的面积

不变,但磁场由弱变强;

②通电线圈从大线圈中抽出时,大线圈的

面积也不改变,但磁场由强变弱;

③当迅速移动滑线变阻器的滑片,小线圈

中的电流迅速变化,电流产生的磁场也随

之而变化,而大线圈的面积不发生变化,

但穿过线圈的磁场强度发生了变化。

4、归纳总结:

在几种实验中,有的磁感应强度没有发生变化,面积发生了变化;而又有的线圈的面积没有变化,但穿过线圈的磁感应强度发生了变化。其共同点是穿过线圈的磁通量发生了变化。磁通量变化的快慢与闭合回路中感应电流的大小有关。

结论:只要穿过闭合回路的磁通量发生变化,闭合电路中就有感应电流产生。

5、课堂总结:

1、产生感应电流的条件:①电路闭合;②穿过闭合电路的磁通量发生改变

2、电磁感应现象:利用磁场产生电流的现象叫电磁感应现象

3、感应电流:由磁场产生的电流叫感应电流

6、例题分析

例1、右图哪些回路中比会产生感应电流

例2、如图,要使电流计G发生偏转可采用的方法是

A、K闭合或断开的瞬间 B、K闭合,P上下滑动

C、在A中插入铁芯 D、在B中插入铁芯

7、练习与作业

1、关于电磁感应,下列说法中正确的是

A导体相对磁场运动,导体内一定会产生感应电流

B导体做切割磁感线的运动,导体内一定会产生感应电流

C闭合电路在磁场中做切割磁感线的运动,电路中一定会产生感应电流

D穿过闭合电路的磁通量发生变化,电路中一定会产生感应电流

2、恒定的匀强磁场中有一圆形闭合圆形线圈,线圈平面垂直于磁场方向,当线圈在此磁场中做下列哪种运动时,线圈中能产生感应电流

A线圈沿自身所在的平面做匀速运动

B线圈沿自身所在的平面做加速直线运动

C线圈绕任意一条直径做匀速转动

D线圈绕任意一条直径做变速转动

3、如图,开始时距形线圈平面与磁场垂直,且一半在匀强磁场外,另一半在匀强磁场内,若要使线圈中产生感应电流,下列方法中可行的是

A以ab为轴转动

B以oo/为轴转动

C以ad为轴转动(转过的角度小于600)

D以bc为轴转动(转过的角度小于600)

4、如图,距形线圈abcd绕oo/轴在匀强磁场中匀速转动,下列说法中正确的是

A线圈从图示位置转过90?的过程中,穿过线圈的磁通量不断减小

B线圈从图示位置转过90?的过程中,穿过线圈的磁通量不断增大

C线圈从图示位置转过180?的过程中,穿过线圈的磁通量没有发生变化

D线圈从图示位置转过360?的过程中,穿过线圈的磁通量没有发生变化

6、在无限长直线电流的磁场中,有一闭合的金属线框abcd,线框平面与直导线ef在同一平面内(如图),当线框做下列哪种运动时,线框中能产生感应电流

A、水平向左运动B、竖直向下平动

C、垂直纸面向外平动D、绕bc边转动

高中物理的优秀教案 篇四

{课前感知}

1.经典力学认为,物体的质量与物体的运动状态 ;而狭义相对沦认为,物体的质量随着它的速度的增大而 ,若一个物体静止时的质量为 ,则当它以速度 运动时,共质量m= 。

2.每一个天体都有一个引力半径,半径的大小由 决定;只要天体实际半径 它们的引力半径,那么由爱因斯坦和牛顿引力理论计算出的力的差异 。但当天体的实际半径接近引力半径时,这种差异 。

{即讲即练}

【典题例释】 【我行我秀】

【例1】20世纪以来,人们发现了一些事实,而经典力学却无法解释,经典力学只适用于解决物体的 问题,不能用来处理 运动问题,只适用于 物体,一般不适用于 粒子。这说明人们对客观事物的具体认识在广度上是有 的,人们应当 。

【思路分析】人们对客观世界的认识要受到他所处的时代客观条件和科学水平的制约,所以人们只有不断扩展自己的认识,才能掌握更广阔领域内的不同事物的本质与规律。

【答案】低速运动 高速 宏观 微观 局限性

不断扩展认识,在更广阔的领域内掌握不同事物的本质与规律

【类题总结】历史的科学成就不会被新的科学成就所否定,它只能是新的科学在一定条件下的特殊情形

【例2】继哥白尼提出“太阳中心说”、开普勒提出行星运动三定律后,牛顿站在世人的肩膀上,创立了经典力学,揭示了包括行星在内的宏观物体的运动规律;爱因斯坦既批判了牛顿力学的不足,又进一步发展了牛顿的经典力学,创立了相对论,这说明 ( )

A.世界无限扩大,人不可能认识世界,只能认识世界的一部分

B.人的意识具有能动性,能够正确地反映客观世界

C.人对世界的每一个正确认识都有局限性,需要发展和深化

D.每一个认识都可能被后人推翻,人不可能获得正确的认识

【思路分析】发现总是来自于认识过程,观点总是为解释发现而提出的,主动认识世界,积极思考问题,追求解决(解释)问题,这是科学研究的基本轨迹。爱因斯坦的相对理论是对牛顿力学的理论的发展和深化,但也有人正在向爱因斯坦理论挑战

【答案】BC

【类题总结】一切科学的发现都是人们主动认识世界的结果,而每个人的研究又都是建立在前人研究的基础上,通过自己的努力去发展和提高。爱因斯坦的相对论理论并没有否定牛顿力学的理论,而是把它看成是在一定条件下的特殊情形。

【例3】一个原来静止的电子,经电压加速后,获得的速度为 .问电子的质量增大了还是减小了?改变了百分之几?

【思路分析】根据爱因斯坦的狭义相对论 得运动后质量增大了。

所以改变的百分比为 .

【答案】增大了 0.02%

【类题总结】在这种情况下,由于质量改变很小,可以忽略质量的改变,经典力学理论仍然适用,而宏观物体的运动速度一般都很小(相比于光速),所以经典力学解决宏观物体的动力学问题是适用的。 1. 19世纪末和20世纪以来,物理学的研究深入到 ,发现 等微观粒子不仅有 ,而且有 ,它们的运动规律不能用经典力学来说明。

2. 下列说法正确的是 ( )

A.经典力学能够说明微观粒子的规律性

B.经典力学适用于宏观物体的低速运动问题,不适用于高速运动的问题

C.相对论与量了力学的出现,表示经典力学已失去意义

D.对于宏观物体的高速运动问题,经典力学仍能适用

3.对于公式 ,下列说法中正确的是( )

A.式中的 是物体以速度V运动时的质量

B.当物体的运动速度 时,物体的质量为 0,即物体质量改变了,故经典力学不适用,是不正确的

C.当物体以较小的速度运动时,质量变化十分微弱,经典力学理论仍然适用,只有当物体以接近光速运动时,质量变化才明显,故经典力学适用于低速运动,而不适用于高速运动

D.通常由于物体的运动速度太小,故质量的变化引不起我们的感觉,在分析地球上物体的运动时,不必考虑质量的变化

{超越课堂}

〖基础巩固

1.下列说法正确的是 ( )

A.在经典力学中,物体的质量不随运动状态而改变,在狭义相对论中,物体的质量也不随运动状态而改变

B.在经典力学中,物体的质量随运动速度的增加而减小,在狭义相对论中,物体的质量随物体速度的增大而增大

C.在经典力学中,物体的质量是不变的,在狭义相对论中,物体的质量随物体速度的增大而增大

D.上述说法都是错误的

2.下列说法正确的是 ( )

A.牛顿定律就是经典力学

B.经典力学的基础是牛顿运动定律

C.牛顿运动定律可以解决自然界中所有的问题

D.经典力学可以解决自然界中所有的问题

3.20世纪初,著名物理学家爱因斯坦提出了 ,阐述物体 时所遵从的规律,改变了经典力学的一些结论.在经典力学中,物体的质量是 的.

而且具有 ,它们的运动规律不能用经典力学来说明.

4. 与 都没有否定过去的科学,而认为过去的科学是自己在一定条件下的特殊情形.

5.一条河流中的水以相对于河岸的速度v水岸流动,河中的船以相对于河水的速度V船水顺流而下,在经典力学中的速度为:V船岸= .

6.在粒子对撞机中,有一个电子经过高压加速,速度达到光速的0.5倍,试求此时电子的质量变为静止时的多少倍?

〖能力提升

7.〖概念理解题20世纪以来,人们发现了一些新的事实,而经典力学却无法解释.经典力学只适用于解决物体的低速运动问题,不能用来处理高速运动问题,只适用于宏观物体,一般不适用于微观粒子.这说明 ( )

A.随着认识的发展,经典力学已成了过时的理论

B.人们对客观事物的具体认识在广度上是有局限性的

C.不同领域的事物各有其本质与规律

D.人们应当不断扩展认识,在更广阔的领域内掌握不同事物的本质与规律

8.〖概念理解题下列说法正确的是 ( )

①爱因斯坦的狭义相对论研究的是物体在低速运动时所遵循的规律

②爱因斯坦的狭义相对论研究的是物体在高速运动时所遵循的规律

③牛顿力学的运动定律研究的是物体在低速运动时所遵循的规律

④牛顿力学的运动定律研究的是物体在高速运动时所遵循的规律

A.①③ B.②④

C.①④ D.②③

9.〖应用题关于经典力学和量子力学,下面说法中正确的是( )

A.不论是对客观物体,还是微观粒子,经典力学和量子力学都是适用的

B.量子力学适用于宏观物体的运动,经典力学适用于微观粒子的运动

C.经典力学适用于宏观物体的运动,量子力学适用于微观粒子的运动

D.上述说法都是错误的

10. 〖概念理解题下面说法中正确的是 ( )

A.根据牛顿的万有引力定律可以知道,当星球质量不变,半径变为原来的一半时,表面上的引力将变为原来的4倍

B.按照广义相对论可以知道,当星球质量不变,半径变为原来的一半时,表面上的引力将大于原来的4倍

C.在球体的实际半径远大于引力半径时,根据爱因斯坦的理论和牛顿的引力理论计算出的力差异很大

D.在天体的实际半径接近引力半径时,根据爱因斯坦的引力理论和牛顿的引力理论计算出的力差异不大

11.〖应用题丹麦天文学家第谷连续20年详细记录了行星的运动过程中的位置的变化。这些资料既丰富又准确,达到了肉眼所能及的限度。但他并没有发现行星运动规律。对此,下列说法正确的有 ( )

A.占有大量感性材料是毫无意义的

B.第谷的工作为发现行星运动规律创造了前提

C.说明第谷没有真正发挥主观能动性

D.第谷缺少的是对感性材料的加工、制作

〖思维拓展

12.〖应用题当物体的速度v=0.8c(c为光速)时,质量增大到原质量的 倍。

13. 〖应用题两台升降机甲、乙同时自由下落,甲上的人看到乙是静止的,也就是说,在甲看来,乙的运动状态并没有改变,但是乙确实受到向下的地球引力,根据牛顿定律,受到外力作用的物体,其运动状态一定会改变,这不是有矛盾吗?你是如何理解的?

第六节 经典力学的局限性

【课前感知】

1.无关;增大;

2.天体的质量;远大于;并不很大;将急剧增大

【我行我秀】

1.(1)微观世界 电子 质子 中子 粒子性 波动性

2.(1)B 【思路分析】经典力学的适用范围是宏观、低速运动的物体,对于微观粒子和高速运动的物体的运动规律可用量子力学与相对论观点解释,两者研究问题的对象不一样,是相互补充的。

3.(1)C、D 【思路分析】公式中m0是静止质量,m是物体以速度v运动时的质量,A不对。由公式可知,只不当v接近光速时,物体的质量变化才明显,一般情况下物体的质量变化十分微小,故经典力学仍然适用,故B不对,C、D正确。

【超越课堂】

1.C【思路分析】在经典力学中,物体的质量是不变,在狭义相对论中,物体的质量随物体速度的增大而增大,二者在速度远小于光速时是统一的。

2.B【思路分析】经典力学并不等于牛顿定律,牛顿运动定律只是经典力学的基础;经典力学并非万能,也有其适用范围,并不能解决自然界中所有的问题 ,没有哪个理论可以解决自然界中所有问题。因此只有搞清牛顿运动定律和经典力学的隶属关系,明确经典力学的适用范围,才能正确解决此类问题。

3.狭义相对论 以接近光速的速度运动 不变

4.相对论 量子力学

5.v船水+v水岸

6.1.155倍

7.BCD

8.D

9.C

10.AB 【思路分析】在球体的实际半径远大于引力半径时,根据爱因斯坦的理论和牛顿的引力理论计算出力差异并不很大。

11.BD【思路分析】开普勒是通过对第谷的资料研究才发现行星运动的规律的,如果第谷对自己的感性材料进行加工制作,相信他也能够发现行星运动的规律。

12.1.7倍 【思路分析】根据质量与速度的关系,将v=0.8c代入求得 m= = =1.7m0.

高中物理教案 篇五

一、课题:万有引力定律

二、课型:概念课(物理按教学内容课型分为:规律课、概念课、实验课、习题课、复习课)

三、课时:1课时

四、教学目标

(一)知识与技能

1.理解万有引力定律的含义并会用万有引力定律公式解决简单的引力计算问题。

2.知道万有引力定律公式的适用范围。

(二)过程与方法:在万有引力定律建立过程的学习中,学习发现问题、提出问题、猜想假设与推理论证等方法。

(三)情感态度价值观

1.培养学生研究问题时,抓住主要矛盾,简化问题,建立理想模型的处理问题的能力。

2.通过牛顿在前人的基础上发现万有引力定律的思考过程,说明科学研究的长期性,连续性及艰巨性,提高学生科学价值观。

五、教学重难点

重点:万有引力定律的内容及表达公式。

难点:1.对万有引力定律的理解;2.学生能把地面上的物体所受重力与其他星球与地球之间存在的引力是同性质的力联系起来。

六、教学法:合作探究、启发式学习等

七、教具:多媒体、课本等

八、教学过程

(一)导入

回顾以前对月-地检验部分的学习,明确既然太阳与行星之间,地球与月球之间、地球对地面物体之间具有与两个物体的质量成正比,跟它们的距离的二次方成反比的引力。这里进一步大胆假设:是否任何两个物体之间都存在这样的。力?

引发学生思考:很可能有,只是因为我们身边的物体质量比天体的质量小得多,我们不易觉察罢了,于是我们可以把这一规律推广到自然界中任意两个物体间,即具有划时代意义的万有引力定律。然后在学生的兴趣中进行假设论证。

(二)进入新课

学生自主阅读教材第40页万有引力定律部分,思考以下问题:

1.什么是万有引力?并举出实例。

教师引导总结:万有引力是普遍存在于宇宙中任何有质量的物体之间的相互吸引力。日对地、地对月、地对地面上物体的引力都是其实例。

2.万有引力定律怎样反映物体之间相互作用的规律?其数学表达式如何?并注明每个符号的单位和物理意义。

教师引导总结:万有引力定律的内容是:宇宙间一切物体都是相互吸引的。两物体间的引力大小,跟它的质量的乘积成下比,跟它们间的距离平方成反比。 式中各物理量的含义及单位:F为两个物体间的引力,单位:N.m1、m2分别表示两个物体的质量,单位:kg,r为两个物体间的距离,单位:m。G为万有引力常量:G=6.67×10-11 N·m2/kg2,它在数值上等于质量是1Kg的物体相距米时的相互作用力,单位:N·m2/kg2.

3.万有引力定律的适用条件是什么?

教师引导总结:只适用于两个质点间的引力,当物体之间的距离远大于物体本身时,物体可看成质点;当两物体是质量分布均匀的球体时,它们间的引力也可直接用公式计算,但式中的r是指两球心间的距离。

4.你认为万有引力定律的发现有何深远意义?

教师引导总结:万有引力定律的发现有着重要的物理意义:它对物理学、天文学的发展具有深远的影响;它把地面上物体运动的规律和天体运动的规律统一起来;对科学文化发展起到了积极的推动作用,解放了人们的思想,给人们探索自然的奥秘建立了极大信心,人们有能力理解天地间的各种事物。

(三)深化理解

在完成上述问题后,小组讨论,学生在教师的引导下进一步深化对万有引力定律的理解,即:

1.普遍性:万有引力存在于任何两个物体之间,只不过一般物体的质量与星球相比太小了,他们之间的万有引力也非常小,完全可以忽略不计。

2.相互性:两个物体相互作用的引力是一对作用力与反作用力。

3.特殊性:两个物体间的万有引力和物体所在的空间及其他物体存在无关。

4.适用性:只适用于两个质点间的引力,当物体之间的距离远大于物体本身时,物体可看成质点;当两物体是质量分布均匀的球体时,它们间的引力也可直接用公式计算,但式中的r是指两球心间的距离。

(四)活动探究

请两名学生上讲台做个游戏:两人靠拢后离开三次以上。创设情境,加深学生对本节知识点的印象和运用,请一位同学上台展示计算结果,师生互评。

1.请估算这两位同学,相距1m远时它们间的万有引力多大?(可设他们的质量为50kg)

解:由万有引力定律得: 代入数据得:F1=1.7×10-7N

2.已知地球的质量约为6.0×1024kg,地球半径为6.4×106m,请估算其中一位同学和地球之间的万有引力又是多大?

解:由万有引力定律得:代入数据得:F2=493N

3.已知地球表面的重力加速度,则其中这位同学所受重力是多少?并比较万有引力和重力?

解:G=mg=490N。

比较结果为万有引力比重力大,原因是因为在地球表面上的物体所受万有引力可分解为重力和自转所需的向心力。

(五)课堂小结

小结:学生在教师引导下认真总结概括本节内容,完成多媒体呈现的知识网络框架图,并把自己这节课的体会写下来、比较黑板上的小结和自己的小结,进行生生互评。

(六)布置作业

作业:完成“问题与练习”。

高中物理的优秀教案 篇六

1、一心向着目标前进的人,整个世界都得给他让路。

2、成功就在再坚持一下的努力之中。

3、奇迹,就在凝心聚力的静悟之中。

一、“静”什么?

1、 环境“安静”:鸦雀无声,无人走动,无声说话、交流,无人随意出进。每一个人充分沉浸在难得的静谧之中。以享受维护安静环境为荣,以影响破坏安静环境为耻。

2 、心态“安静”:心静自然“凉”,脑子自然清醒,精力自然集中,思路自然清晰。心静如水,超然物外,成为时间的主人,学习的主人。情绪稳定,效率较高。心不静,则心乱如麻,心神不定,心不在焉,如坐针毡,眼在此心在彼,貌似用功,实则骗人。

二、【高考常考查的知识点】

1.静力学的受力分析与共点力平衡(选择题)

此题定位为送分题目,一般安排为16题,即物理学科的第一题,要求学生具有规范的受力分析习惯,熟练运用静力学的基本规律,如胡克定律、滑动摩擦定律与静摩擦力的变化规律、力的合成与分解、正交分解法等,可涉及两个状态,但一般不涉及变化过程的动态分析,也不至于考查相似三角形法等非常规方法。不必考虑计算题

2.运动图象及其综合应用(选择题)

山东卷对物理图象的专门考查以运动图象为代表,立足于对物理图象的理解。可涉及物理图象的基本意义、利用运动图象的分析运动过程、用不同物理量关系图象描述同一运动过程等。以宁夏、海南为代表的利用运动图象考查追及、相遇问题尚未被山东采纳。专题设计为选择题,尽量多涉及不同的图象类型。

3.牛顿定律的直接应用(选择、计算题)

与自感一样,超重失重为Ⅰ级要求知识点,此题为非主干知识考查题,为最可能调整和变化的题目。

但对牛顿定律的考查不会削弱,而很可能更加宽泛和深入,可拓展为具体情境中力和运动关系的分析(选择)、直线、类平抛和圆周运动中牛顿第二定律的计算(计算题的一部分)。

此专题定位在牛顿定律的直接应用,针对基本规律的建立、定律物理内涵的理解及实际情境中规律的应用,可涉及瞬时分析、过程分析、动态分析、特殊装置、临界条件,以及模型抽象、对象转换、整体隔离、合成分解等方法问题。

4.第四专题 万有引力与航天(选择、计算题)

此专题内容既相对宽泛又相对集中,宽泛指万有引力与航天的内容均可涉及,集中即一定是本章内容且集中在一道题目中。这部分内容也是必考内容,今年考试说明中本章知识点增加了“经典时空观和相对论时空观(Ⅰ)”,“环绕速度”由(Ⅱ)到(Ⅰ)。可以理解为深度减弱,广度增加,最大的可能仍是选择题,也不排除作为力学综合题出现的可能,复习时应适当照顾。需特别注意的是,一定要关注近一年内天文的新发现或航天领域的新成就,题目常以此类情境为载体。

5.功能关系:(选择、计算题)动能定理、机械能守恒、功能关系、能量守恒是必考内容,要结合动力学过程分析、功能分析,进行全过程、分过程列式。考查形式选择题、计算题

注意:必修1、2部分考察多为选择题,但在牛顿定律结合功能关系以及抛体运动和圆周运动部分综合的计算,出现在24题上,本题一般涉及多个过程,是中等难度的保分题。

6.静电场主要以考察电场线、电势、电势差、电势能、电容器、带电粒子的加速与偏转为主

7.恒定电流以考察电学实验为主,选择中也容易出电路的分析题

8.磁场以考察磁场对运动电荷和通电导线的作用为主,选择中易出一个题,在大题中容易出与电场及重力场相结合的题目。

9.电磁感应以选择题、计算题,主要考察导体棒的切割以及感生电动势,楞次定律,注意图像问题

10.交流电主要考察交流电的四值、图像,以及远距离输电变压器问题,通常以选择形式出现

11.热学3-3:油膜法、微观量计算,气体实验定律,热一律、压强微观解释、热二律是重点

10.选修3-5中动量守恒、动量变化量计算、原子结构中能级跃迁、原子核中质能方程、核反应方程是考察重点。

三、【静悟注意事项】

1. 以查缺补漏为主要目的,以考纲知识点为主线复习

2. 重点看课本、课后题、改错本、以前做过的相关题目

3. 把不会的问题记下来,集中找时间找老师解决

4. 必须边思考,边动笔。静悟最忌只动眼动嘴的学习方式,必须多动脑多动手,做到手不离笔,笔不离纸。

匀变速直线运动

【考试说明】

主题 内 容 要求 说明

质点的直线

运动 参考系、质点

位移、速度和加速度

匀变速直线运动及其公式、图像

【知识网络】

【考试说明解读】

1.参考系

⑴定义:在描述一个物体的运动时,选来作为标准的假定不动的物体,叫做参考系。

⑵运动学中的同一公式中涉及的各物理量应以同一参考系为标准。

2.质点

⑴定义:质点是指有质量而不考虑大小和形状的物体。

⑵质点是物理学中一个理想化模型,能否将物体看作质点,取决于所研究的具体问题,而不是取决于这一物体的大小、形状及质量,只有当所研究物体的大小和形状对所研究的问题没有影响或影响很小,可以将其形状和大小忽略时,才能将物体看作质点。

物体可视为质点的主要三种情形:

①物体只作平动时;

②物体的位移远远大于物体本身的尺度时;

③只研究物体的平动,而不考虑其转动效果时。

3.时间与时刻

⑴时刻:指某一瞬时,在时间轴上表示为某一点。

⑵时间:指两个时刻之间的间隔,在时间轴上表示为两点间线段的长度。

⑶时刻与物体运动过程中的某一位置相对应,时间与物体运动过程中的位移(或路程)相对应。

4.位移和路程

⑴位移:表示物体位置的变化,是一个矢量,物体的位移是指从初位置到末位置的有向线段,其大小就是此线段的长度,方向从初位置指向末位置。

⑵路程:路程等于运动轨迹的长度,是一个标量。只有在单方向的直线运动中,位移的大小才等于路程。

5.速度、平均速度、瞬时速度

⑴速度:是表示质点运动快慢的物理量,在匀速直线运动中它等于位移与发生这段位移所用时间的比值,速度是矢量,它的方向就是物体运动的方向。

⑵平均速度:物体所发生的位移跟发生这一位移所用时间的比值叫这段时间内的平均速度,即 ,平均速度是矢量,其方向就是相应位移的方向。公式 =(V0+Vt)/2只对匀变速直线运动适用。

⑶瞬时速度:运动物体经过某一时刻(或某一位置)的速度,其方向就是物体经过某有一位置时的运动方向。

6.加速度

⑴加速度是描述物体速度变化快慢的物理量,是一个矢量,方向与速度变化的方向相同。

⑵做匀速直线运动的物体,速度的变化量与发生这一变化所需时间的比值叫加速度,即

⑶速度、速度变化、加速度的关系:

①方向关系:加速度的方向与速度变化的方向一定相同,加速度方向和速度方向没有必然的联系。

②大小关系:V、△V、a无必然的大小决定关系。

③只要加速度方向跟速度方向相同,无论加速度在减少还是在增大,物体的速度一定增大,若加速度减小,速度增大得越来越慢(仍然增大);只要加速度方向跟速度方向相反,物体的速度一定减小。

7、运动图象:s—t图象与v—t图象的比较

下图和下表是形状一样的图线在s—t图象与v—t图象中的比较。

s—t图 v—t图

①表示物体匀速直线运动(斜率表示速度v) ①表示物体匀加速直线运动(斜率表示加速度a)

②表示物体静止 ②表示物体做匀速直线运动

③表示物体向反方向做匀速直线运动;初位移为s0 ③表示物体做匀减速直线运动;初速度为v0

④t1时间内物体位移s1 ④t1时刻物体速度v1(图中阴影部分面积表示质点在0~t1时间内的位移)

补充:(1) s—t图中两图线相交说明两物体相遇,v—t图中两图线相交说明两物体在交点时的速度相等

(2) s—t图象与横轴交叉,表示物体从参考点的一边运动到另一边。 v—t图线与横轴交叉,表示物体运动的速度反向。

(3) s—t图象是直线表示物体做匀速直线运动或静止。图象是曲线则表示物体做变速运动。 v—t图线是直线表示物体做匀变速直线运动或匀速直线运动;图线是曲线表示物体做变加速运动。

(4) s—t图象斜率为正值,表示物体沿与规定正方向相同的方向运动。图象斜率为负值,表示物体沿与规定正方向相反的方向运动。 v—t图线的斜率为正值,表示物体的加速度与规定正方向相同;图象的斜率为负值,表示物体的加速度与规定正方向相反。

【例题:07山东理综】如图所示,光滑轨道MO和ON底端对接且ON=2MO,M、N两点高度相同。小球自M点右静止自由滚下,忽略小球经过O点时的机械能损失,以v、s、a、EK分别表示小球的速度、位移、加速度和动能四个物理量的大小。下列图象中能正确反映小球自M点到N点运动过程的是

【例题:08山东理综】质量为1500kg的汽车在平直的公路上运动,v-t图象如图所示。由此可求 (ABD )

A.前25 s内汽车的平均速度

B.前l0 s内汽车的加速度

C.前l0 s内汽车所受的阻力

D.15~25 s内合外力对汽车所做的功

8.匀变速直线运动的基本规律及推论:

基本规律: ⑴Vt=V0+at, ⑵s=V0t+at2/2

推论: ⑴Vt2 _VO2=2as

⑵ (Vt/2表示时间t的中间时刻的瞬时速度)

⑶任意两个连续相等的时间间隔(T)内,位移之差是一恒量。即:

sⅡ-sⅠ=sⅢ-sⅡ=……=sN-sN-1=△s=aT2.

9.初速度为零的匀加速直线运动的特点: (设T为等分时间间隔):

⑴1T末、2T末、3T末……瞬时速度的比为:v1:v2:v3:……vn=1:2:3:……:n

⑵1T内、2T内、3T内……位移的比为:s1:s2:s3:……:sn=12:22:32:……:n2

⑶第一个T内、第二个T内、第三个T内……位移的比为:s1:sⅡ:sⅢX……:sN=1:3:5:……:(2n-1)

⑷从静止开始通过连续相等的位移所用时间的比

t1:t2:t3:……:tn=

10、竖直上抛运动的两种研究方法

①分段法:上升阶段是匀减速直线运动,下落阶段是自由落体运动。

②整体法:从全程来看,加速度方向始终与初速度v0的方向相反,所以可把竖直上抛运动看成是一个匀变速直线运动,应用公式时,要特别注意v,h等矢量的正负号。一般选取向上为正方向,则上升过程中v为正值下降过程中v为负值,物体在抛出点以下时h为负值。

11、追及问题的处理方法

1. 要通过两质点的速度比较进行分析,找到隐含条件。 再结合两个运动的时间关系、位移关系建立相应的方程求解,也可以利用二次函数求极值,及应用图象法和相对运动知识求解

2. 追击类问题的提示

1.匀加速运动追击匀速运动,当二者速度相同时相距最远.

2.匀速运动追击匀加速运动,当二者速度相同时追不上以后就永远追不上了.此时二者相距最近.

3.匀减速直线运动追匀速运动,当二者速度相同时相距最近,此时假设追不上,以后就永远追不上了.

4.匀速运动追匀减速直线运动,当二者速度相同时相距最远.

【例题:09海南】甲乙两车在一平直道路上同向运动,其 图像如图所示,图中 和 的面积分别为 和 .初始时,甲车在乙车前方 处。(ABC)

A.若 ,两车不会相遇 B.若 ,两车相遇2次

C.若 ,两车相遇1次 D.若 ,两车相遇1次

高中物理教案 篇七

【教学目标】

1.了解什么是热辐射及热辐射的特性。

2.了解黑体辐射,了解黑体热辐射的强度与波长的关系 。

3.了解能量子的概念 及提出的科学过程,领会这一科学突破过程中科学家的思想。

4.了解宏观物体和微观粒子的能量变化特点,体会量子论的建立深化了人们对于物质世界的认识 。

【教学重点】

能量子的概念。

【教学难点】

黑体辐射的实验规律。

【教学方法】

讲授为主,启发、引导。

【教学用具】

多媒体辅助教学设备。

【教学过程 】

一、引入新课

师:19世纪末,牛顿定律在各个领域里都取得了很大的成功:在机械运动方面不用说,在分子物理方面,成功地解释了温度、压强、气体的内能。在电磁学方面,建立了一个能推断一切电磁现象的 Maxwell方程。另外还找到了力、电、光、声等都遵循的规律---能量转化与守恒定律。当时许多物理学家都沉醉于这些成绩和胜利之中。他们认为物理学已经发展到头了。

1900年在英国皇家学会的新年庆祝会上,著名物理学家开尔文作了展望新世纪的发言:“科学的大厦已经基本完成,后辈的物理学家只要做一些零碎的修补工作就行了。” “但是,在物理学晴朗天空的远处,还有两朵令人不安的乌云。”

这两朵乌云是指什么呢? 一朵与黑体辐射有关,另一朵与迈克尔逊实验有关。然而, 事隔不到一年(1900年底),就从第一朵乌云中降生了量子论,紧接着(1905年)从第二朵乌云中降生了相对论。经典物理学的大厦被彻底动摇,物理学发展到了一个更为辽阔的领域。正可谓“山重水复疑无路, 柳暗花明又一村”。

我们这节课就来学习“能量量子化的发现 ——物理学新纪元的到来”。

二、进行新课

1.黑体与黑体辐射

师:请同学们阅读教材27第一段,思考:什么是热辐射,物体的热辐射有什么特性?(学生阅读教材、思考问题)

(1)热辐射现象

师:我们周围的一切物体都在辐射各种波长的电磁波,这种辐射与由于物体中的分子、原子受到激发而造成的,它与温度有关,因此称为热辐射。

所辐射电磁波的特征与温度有关。 当温度升高时,热辐射中较短波长的成分越来越强。。例如:在给铁块加热使其温度升高时,从看不出发光到暗红到橙色到黄白色 ,这表明辐射强度按波长的分布情况随物体的温度而有所不同。

课件展示:铁块在温度升高时颜色的变化(下图)。

(板书)1 热辐射

①定义

②特性

辐射强度按波长的分布情况随物体的温度而有所不同。

(2)黑体

教师:除了热辐射之外,物体表面还会吸收和反射外界射来的电磁波。不同的物体吸收和反射电磁波的能力是不一样的。

(板书)能全部吸收各种波长的电磁波而不发生反射的物体,称为绝对黑体,简称黑体。

教师:课件展示黑体模型(如下图)并进行阐释。

不透明的材料制成带小孔的空腔,那么射入小孔的电磁波在空腔内表面会发生多次反射和吸收,最终不能从空腔射出。这个小孔可近似看作黑体。

2.黑体辐射的实验规律

教师:一般材料的物体和黑体辐射电磁波的情况有什么不同呢?

高中物理的优秀教案 篇八

三维教学目标

1、知识与技能

(1)知道波的叠加原理,知道什么是波的干涉条件、干涉现象和干涉图样;

(1)知道什么是波的衍射现象,知道波发生明显衍射现象的条件;

(2)知道干涉现象、波的衍射现象都是波所特有的现象。

2、过程与方法:

3、情感、态度与价值观:

教学重点:波的叠加原理、波的干涉条件、干涉现象和干涉图样、波发生明显衍射现象的条件。

教学难点:波的干涉图样

教学方法:实验演示

教学教具:长绳、发波水槽(电动双振子)、音叉

(一)引入新课

大家都熟悉“闻其声不见其人”的物理现象,这是什么原因呢?通过这节课的学习,我们就会知道,原来波遇到狭缝、小孔或较小的障碍物时会产生一种特有得现象,这就是波的衍射。

(二)进行新课

波在向前传播遇到障碍物时,会发生波线弯曲,偏离原来的直线方向而绕到障碍物的背后继续转播,这种现象就叫做波的衍射。

1. 波的衍射

(1)波的衍射:波可以绕过障碍物继续传播,这种现象叫做波的衍射。

哪些现象是波的衍射现象?(在水塘里,微风激起的水波遇到露出水面的小石头、芦苇的细小的障碍物,会绕过它们继续传播。)

实验:下面我们用水波槽和小挡板来做,请大家认真观察。

现象:水波绕过小挡板继续传播。将小挡板换成长挡板,

重新做实验:

现象:水波不能绕到长挡板的背后传播。这个现象说明发生衍生的条件与障碍物的大小有关。

(2)衍射现象的条件

演示:在水波槽里放两快小挡板,当中留一狭缝,观察波源发出的水波通过窄缝后怎样传播。

第一、保持水波的波长不变,该变窄缝的宽度(由窄到宽),观察波的传播情况有什么变化。观察到的现象:在窄缝的宽度跟波长相差不多的情况下,发生明显的衍射现象。水波绕到挡板后面继续传播。(参见课本图10-26甲)

在窄缝的宽度比波长大得多的情况下,波在挡板后面的传播就如同光线沿直线传播一样,在挡板后面留下了“阴影区”。(参见课本图10-26乙)

第二、保持窄缝的宽度不变,改变水波的波长(由小到大),将实验现象用投影仪投影在大屏幕上。可以看到:在窄缝不变的情况下,波长越长,衍射现象越明显。

将课本图10-27中的甲、乙、丙一起投影在屏幕上,它们是做衍射实验时拍下的照片。甲中波长是窄缝宽度的3/10,乙中波长是窄缝宽度的5/10,丙中波长是窄缝宽度的7/10。

通过对比可以看出:窄缝宽度跟波长相差不多时,有明显的衍射现象。

窄缝宽度比波长大得多时,衍射现象越不明显。窄缝宽度与波长相比非常大时,水波将直线传播,观察不到衍射现象。

结论:只有缝、孔的宽度或障碍物的尺寸跟波长相差不多,或者比波长更小时,才能观察到明显的衍射现象。一切波都能发生衍射,衍射是波的特有现象。

2、波的叠加

我们有这样的生活经验:将两块石子投到水面上的两个不同地方,会激起两列圆形水波。它们相遇时会互相穿过,各自保持圆形波继续前进,与一列水波单独传播时的情形完全一样,这两列水波互不干扰。

3、波的干涉

一般地说,振动频率、振动方向都不相同的几列波在介质中叠加时,情形是很复杂的。我们只讨论一种最简单的但却是最重要的情形,就是两个振动方向、振动频率都相同的波源所发出的波的叠加。

演示:在发波水槽实验装置中,振动着的金属薄片AB,使两个小球S1、S2同步地上下振动,由于小球S1、S2与槽中的水面保持接触,构成两个波源,水面就产生两列振动方向相同、频率也相同的波,这样的两列波相遇时产生的现象如课本图10-29所示。为什么会产生这种现象呢?我们可以用波的叠加原理来解释。

课本图10-30所示的是产生上述现象的示意图。S1和S2表示两列波的波源,它们所产生的波分别用两组同心圆表示,实线圆弧表示波峰中央,虚线圆弧表示波谷中央。

某一时刻,如果介质中某点正处在这两列波的波峰中央相遇处[课本图10-30所示中的a点],则该点(a点)的位移是正向最大值,等于两列波的振幅之和。经过半个周期,两列波各前进了半个波长的距离,a点就处在这两列波的波谷中央相遇处,该点(a点)的位移就是负向最大值。再经过半个周期,a点又处在两列波的波峰中央相遇处。这样,a点的振幅就等于两列波的振幅之和,所以a点的振动总是最强的。这些振动最强的点都分布在课本图10-30中画出的粗实线上。

某一时刻,介质中另一点如果正处在一列波的波峰中央和另一列波的波谷中央相遇处[课本图10-30中的b点],该点位移等于两列波的振幅之差。经过半个周期,该点就处在一列波的波谷中央和另一列波的波峰中央相遇处,再经过半个周期,该点又处在一列波的波峰中央和另一列波的波谷中央相遇处。这样,该点振动的振幅就等于两列波的振幅之差,所以该点的振动总是最弱的。如果两列波的振幅相等,这一点的振幅就等于零。这就是为什么在某些区域水面呈现平静的原因。这些振动最弱的点都分布在课本图10-30中画出的粗虚线上。可以看出,振动最强的区域和振动最弱的区域是相互间隔开的。

频率相同的波,叠加时形成某些区域的振动始终加强,另一些区域的振动始终减弱,并且振动加强和振动减弱的区域相互间隔,这种现象叫做波的干涉(inerference)。形成的图样叫做干涉图样。

只有两个频率相同、振动方向相同的波源发出的波,叠加时才会获得稳定的干涉图样,这样的波源叫做相干波源,它们发出的波叫做相干波。不仅水波,一切波都能发生干涉,干涉现象是一切波都具有的重要特征之一。

演示:敲击音叉使其发声,然后转动音叉,就可以听到声音忽强忽弱。这就是声波的干涉现象。

(1)做波的干涉:频率相同的波,叠加时形成某些区域的振动始终加强,另一些区域的振动始终减弱,并且振动加强和振动减弱的区域相互间隔,这种现象叫做波的干涉。形成的图样叫做干涉图样。

(2)特点:干涉现象是一切波都具有的现象。

(3)产生条件:两列波的频率必须相同。

高中物理教案 篇九

《向心力1》教案设计

一、教材分析

本节教材选自人民教育出版社全日制普通高中课程标准实验教科书(物理2·必修)第五章《曲线运动》第六节《向心力》。

教材的内容方面来看,本章节主要讲解了向心力的定义、定义式、方向及验证向心力的表达式,变速圆周运动和一般曲线运动。前面几节已经学习了曲线运动、圆周运动、向心加速度,这节讲的是描述使物体做圆周运动的合外力,是对物体运动认识上的升华,为接下来万有引力的的学习奠定了基础。所以在整个教材体系中起了承上启下的作用,并且这样的安排由简单到复杂,符合学生的认知规律。

从教材的地位和作用方面来看,本章节是运动学中的重要概念,也是高一年级物理课程中比较重要的概念之一,是对物体运动认识上的升华,它把运动学和动力学联系在了一起,具有承上启下的桥梁作用,也是学生知识系统中不可或缺的重要组成部分。

二、学情分析

【知识基础方面】在学习本节课前学生已经学习了曲线运动、圆周运动、向心加速度,具备了探究向心力的基本知识和基本技能,这为本节课的探究性学习起到了铺垫作用。

【思维基础方面】高一的学生通过初中科学和第一学期的学习,具有了一定的物理思维方法和较强的计算能力,但接受能力尚欠缺,需要教师正确的引导和启发。

【情感态度方面】在学生的生活经验中,与向心力有关的现象有,但是有一些是错误的这就给学生理解向心力的概念带来困难。

三、教学目标

【知识技能目标】理解向心力的定义;

能说出向心力的定义、写出向心力的定义式和单位理解向心力的作用效果;用圆锥摆粗略验证向心力的表达式;

【过程方法目标】

通过对向心力,向心加速度,圆周运动,牛顿第二定律的理解与学习,相互联系,体验对物理概念的学习方法

【情感态度与价值观目标】

通过用概念前后联系的方法得出加速度的概念,感悟到探索问题解决问题的兴趣和学无止境的观点;

通过向心力的教学引导学生从现实的生活经历与体验出发,激发学生的学习兴趣;通过一些有趣的实验实验,加深学生的印象,容易让学生理解,引起学生兴趣;

四、重点与难点

重点:向心力表达式验证,向心力来源与作用效果。设定一定运动情景,来验证向心力表达式。来源进行举例说明,进行受力分析。(重点如何落实)

难点:向心力表达式的验证。通过用圆锥摆粗滤验证表达式,通过圆锥摆做匀速圆周运动解释原理,分析其在运动角度和手里角度的合外力,测量数据与测量器材,一步步得出表达式的正确。(难点咋么突破)

五、教学方法与手段

教学方法:演示法,讲授法,讨论法教学手段:多媒体,口述

六、教学过程

1.引入

回顾本章内容,复习向心加速度,放一个有关视屏,向同学提问物体为甚么做圆周运动?

2.新课教学(熟悉一下过渡)

一、做小球做圆周运动的实验,多问题进行思考,得出向心力特点进行总结

二、教授有关向心力的有关知识并进行一定补充。

三、用圆锥摆粗滤验证向心力表达式小结:向心力定义表达式

高中物理的优秀教案 篇十

教学目标

(一)知识与技能

1.知道与电流磁效应和电磁感应现象的发现相关的物理学史。

2.知道电磁感应、感应电流的定义。

(二)过程与方法

领悟科学探究中提出问题、观察实验、分析论证、归纳总结等要素在研究物理问题时的重要性。

(三)情感、态度与价值观

1.领会科学家对自然现象、自然规律的某些猜想在科学发现中的重要性。

2.以科学家不怕失败、勇敢面对挫折的坚强意志激励自己。

教学重点、难点

教学重点

知道与电流磁效应和电磁感应现象的发现相关的物理学史。领悟科学探究的方法和艰难历程。培养不怕失败、勇敢面对挫折的坚强意志。

教学难点

领悟科学探究的方法和艰难历程。培养不怕失败、勇敢面对挫折的坚强意志。

教学方法

教师启发、引导,学生自主阅读、思考,讨论、交流学习成果。

教学手段

计算机、投影仪、录像片

教学过程

一、奥斯特梦圆“电生磁”------电流的磁效应

引导学生阅读教材有关奥斯特发现电流磁效应的内容。提出以下问题,引导学生思考并回答:

(1)是什么信念激励奥斯特寻找电与磁的联系的?在这之前,科学研究领域存在怎样的历史背景?

(2)奥斯特的研究是一帆风顺的吗?奥斯特面对失败是怎样做的?

(3)奥斯特发现电流磁效应的过程是怎样的?用学过的知识如何解释?

(4)电流磁效应的发现有何意义?谈谈自己的感受。

学生活动:结合思考题,认真阅读教材,分成小组讨论,发表自己的见解。

二、法拉第心系“磁生电”------电磁感应现象

教师活动:引导学生阅读教材有关法拉第发现电磁感应的内容。提出以下问题,引导学生思考并回答:

(1)奥斯特发现电流磁效应引发了怎样的哲学思考?法拉第持怎样的观点?

(2)法拉第的研究是一帆风顺的吗?法拉第面对失败是怎样做的?

(3)法拉第做了大量实验都是以失败告终,失败的原因是什么?

(4)法拉第经历了多次失败后,终于发现了电磁感应现象,他发现电磁感应现象的具体的过程是怎样的?之后他又做了大量的实验都取得了成功,他认为成功的“秘诀”是什么?

(5)从法拉第探索电磁感应现象的历程中,你学到了什么?谈谈自己的体会。

学生活动:结合思考题,认真阅读教材,分成小组讨论,发表自己的见解。

三、科学的足迹

1、科学家的启迪 教材P4

2、伟大的科学家法拉第 教材

四、实例探究

【例1】发电的基本原理是电磁感应。发现电磁感应现象的科学家是(C)

A.安培 B.赫兹 C.法拉第 D.麦克斯韦

【例2】发现电流磁效应现象的科学家是__奥斯特__,发现通电导线在磁场中受力规律的科学家是_安培_,发现电磁感应现象的科学家是_法拉第_,发现电荷间相互作用力规律的的科学家是_库仑_。

【例3】下列现象中属于电磁感应现象的是(B)

A.磁场对电流产生力的作用 B.变化的磁场使闭合电路中产生电流

C.插在通电螺线管中的软铁棒被磁化D.电流周围产生磁场

五、学生的思考:

1、我们可以通过哪些实验与现象来说明(证实)磁现象与电现象有联系

2、如何让磁生成电?

【高中物理优秀教案】相关范文

高中物理优秀教案【优秀5篇】01-31

高中物理优秀教案【【优秀9篇】03-25

高中物理的优秀教案【精选7篇】05-14

高中物理教案【优秀4篇】06-30

高中物理优秀教案(优秀10篇)09-21

高中物理教案(4篇)09-26

高中物理教案(精选9篇)11-16

高中物理的优秀教案【5篇】03-22

高中物理摩擦力教案(优秀10篇)01-01

高中政治优秀教案设计模板【10篇】01-01

最新范文

高中数学优秀教案(优秀7篇)10-20

高中数学必修五教案(8篇)10-17

电子邮件优秀10篇10-17

2.4网络数据库优秀5篇10-16

高中语文评职教案优秀9篇10-14

高中音乐教案(优秀8篇)10-14

《邹忌讽齐王纳谏》教案教学设计优秀10-12

高中语文教案(优秀9篇)10-11

高中语文《归园田居(其一)》教案(优秀10-10

高中体育教案模板7篇10-09

56 47917